DOCUbENT RESUME

AUTHOR	Deichmann, John; Beattie, Ian TITLE
	Spatial and Modality Effects in Simple Mathematical
COB DATE	Compation,
NOTE	Apr 72
	10p. Paper presented at the meeting of the American
	Educational Research Association, April 1972

EDRS PRICE DESCRIPTORS

MF-\$0.65 HC-\$3.29
Addition; *Algorithms; Arithmetic; Basic Skills; *Elementary School Mathematics; Multiplication; *Oral Communication: *Research; Subtraction; *Visual Stimuli

ABSTRACT

This study explored the effects of visual (vertical and horizontal) and oral presentation modes upon simple mathematical computations (addition, subtraction, and multiplication). Seventy-two undergraduate education majors were employed as subjects. The placement of the process sign (left, middle, right) and whether a one or two digit number appeared first in the mathematical sentence was manipulated. The results demonstrated significant differences for modality, type of computation, sign and two-digit placement. Further, it appears that for the oral presentation, the process sign placed last is superior to the first position. (Author/MM)

2.6

April 1972

John Deichmann
Southern Illinois University
at Carbondale
Ian Beattie
Southern Illinois University
at Carbondale

SPATIAL AND MODLITY EFFECTS IN SIMPLE MATHEMATICAL COMPUTATION
 John Deichmann, Southern Illinois University Ian Beattie, Southern Illinois University

ABSTRACT
This study explored the effects of visual (vertical and horizontal) and orel presentation modes upon simple mathematical computations (addition, sibtraction, and multiplication). Seventy-two undergraduate education majors were employed ae subjects. The placement of the process sign (left, middle, right) and whether a one or two digit number appeared first in the mathematical sentence was manipulated. The results demonstrated significant differences for modality, type of computation, sign and two-digit placement. Further, it appears that for the oril presentat:on, the process sign placed last is superior to the first position.

The objecilve of the following study was to obtain data on the perceptual processes and habits which may enter into simple mathematical computations. It is an .admittedly normative approach. The research questions stem less from any theoritical position than they do from a puzzlement over on-going practice. Research attempts have thus far ignored the effects of problem presentation configuration upon acquisition and performance of simple mathematical computations. It appears that no empirically based rationale has been advance for: 1) the visual presentation (vertical or horizontal) of the problems, 2) the placement of the operation sign within the problem, and 3) the alternate placement of one and two digit numbers, in addition, the possible modality (visual or aural) effecte have not been explored. Whether any of the above manipulations differentially effect initial acquisition, long term retention, or actual computational ease is not known. For example, if reading habjits produce a left to iight eye scan habit, computation sign placement might be more efficient if placed first in the mathematical sentence, at least for the horizontal presentation method. This initial placement would allow the student to encode the required operation and develop the appropriate set in order to act correctly upon the following numbers. The possibility of age or grade differences interacting with the perceptual displays is also unknown. The specific purpose of the present research was therefore, to demonstrate possible performence differences related to the method of presentation of simple mathematical computations.

METHOD
The subjects (Ss) consisted of seventy-two undergraduate education majors who were randomly assigned to one of three presentation groups: Group I: problems were presented with digits arranged vertically (V); Group II: presentation was horizontal (H); Group III was presented the material aurally (A). All groups were presented the same 180 problems: sixty of the problems contained the operation (,,$+- x$) sign on the left for H (top for V and first for A); sixty in the middle;
and the remaining sixty on tise right (bottom for V or last for A). For each group of sixty problems, twenty were addition, twenty weic subtraction, and twerity were muliciplication. For each of these twenty, half were presented with a two-digit number (2) first; with the remaining problems a one-digit number (1) first.

All manipulations with the problems were randomized. Each presentation group received ithe same order (once randomized) of the proislems. The visual presentations (Hand V) were via a carousel prosector, with the A presentation via a tape recorder. The words plus, minus and times were used in the A group; the respective visual presertation was + , - , and x.

Problem exposure time for V and H was equated with the A presentation time, which resulted in approximately a three-second presentation rate with a one-second inter-problem interval. Subjects recorded their responses on a numbered form provided.

RESULTS AND DISCUSSION

. The analysis of correct scores is presented first. Subtraction answers vere scored as correct regardless of the plus or minus answer if the number was correct. The modality employed, sign placement, type of sign, and digit placement produced a $3 \times 3 \times 3 \times 2$ factorial design: 3 modalities (V, H, A) $\times 3$ signs (+ ,,x) x 3 placements (L, if, R) $\times 2$ digit placement (two digit first, one digit first). The score of each cell reflected the number of corrected responses for the 24 Ss on each of the 10 projlems for that cell. Table 1 contains the summary statistics for correct answers. The $3 \times 3 \times 3 \times 2$ ANOVA for correct scores produced significant results for all four main effects; modality $F(2,486)=133.148, p<.01 ;$ sign $F(2,486)$ $108.670, p\{.01 ;$ placement $F(2,486)=6.935, p<.01 ;$ digit placement $F(1,486)=$ 5.4.1, $p<.01$. Furthermore the mode x sign interaction was also significant F $(6,486)=6.02 \dot{4}, \mathrm{p} .01$. The latter would appear to have been caused by the extremely low x cell of the H group. Altiough not explicitly stated in the in-
troduction, some resul:s nere expected by the experimenters based solely or the very overlearned habii of reacinf Erom left to tide, combined with the equaliy overlearned habit of horizontal visual presentatiun with the computational sign in. the middle. (It is much to scon to predict results from information processing tieozy, analysis by synthesis, eitc.) The vertical cordition had no "real liseil similar condition of praciace, foit the usual presentation mode is with the computation sign : O the visual left of the bottom digit.

Based on the above, it vas preaicted that the horizontal condition would produce the mosi correct, with the vertical condition nexi and with the oral (leasi prior practice) the poorest. Further, it was predicted that the M sign position would be the most affective (due to prior practive, at least in the 11 and 0 condieions) with L position uext (due to L to R reading habit which would allow a set Eo develop ir. S to operate correctly upon the followirg presented numbers), R position would therefore ie the poorest. Predicíiors reearding sign were based on clessroom observation wi:h ease of computations fion high to low in the order of ヶ, ", x. Two digit rumber first was expected to produce a greater number of correct thar one digit first again due to the usual method of placing the 2 -digit rumber on top or to the left in text ard wor'books. The ob:aitred results quite nicely demoistrated the inadequacy oi ox commor sense prediction. The nodality results

TABLE 1
Sumary Saitistics For Correct Arswers

	A	V	It	L	M	R	\cdots	-	x
$\overline{\mathbf{X}}$	13.133	16.839	11.039	14.044	16. 500	15.337	18.117	17.650	10.839
SD	\%.019	4.645	6.051	0.011	5.439	6.337	4.405	4.620	5.836

ve:e the reverse of the irisicl prediction. The means for A, V, and H were 18.18 , $1 亡 . \operatorname{Si}$, and 11.64 respecively. (A vs. V, $t(180)=-2.638 \mathrm{p}$ (.01; A vs. $H, t(100)=$ 11.125, $p ; .001 ; t$ vs. $H, i(100)=9.107, p<.0 j 1)$

Rerjarding sign placement, the 11 position did produce the most correct responses. The \mathbb{R} position however was consistantly better thai: the L position although the differences did noi reach significance. The last result certainly deserves further exploration. Regarding the type of sigr: ε rid digit placement, the results matched
 - vs. $x, \underline{t}(100)=12.227, p \times .001)$.

The A group would appear (in retrospect) to possess two advantages over the two visual presentations modes. During presentation, the $\underline{S} s$ in the A group could be lool:ing at the answer cheai, this was not true in the V and H groups. Further, A. preserication could quite possibly have allowed the S s to rearrange the aural input (possibly in sone i!:onic foim) to match the form nost suited for them. The possibility Of modality differences be,ond those mentioned above are certainly possible, the authors believe however, that further speculation at this point is unwarranted.

Both of the above mentioned factors could have combined to produce tine superior results for tha A Eroup. The V ard H differences, however, can be explained by netoher, but may be explair:ed by employing the concept of overlearned habit. AlGhough not done by the autiozs, if during presentations of the A condition the S s were allowed to wrice the pioblem down, it would be predicted (at this point in time a': any atate) that $\underline{s} s$ would do so in a verifel manner. Previous vertical computation practice would therefore appeai to over-ride any horizontal reading habit. It would appear that $\underline{S} s$ are capable of adapting their scaning habit to the appropricte material, i.e. words or rumbers. How the vertical process habit affects the introducifor of algebraic formulations is unknown. The complete reversal of the predicted L/R superiority is fascimatiry. Replication is obviously in order to verify chis findine.

Error Azalysis
As with the number of coriect items, analysis of the error scores do not include the errors with the negaiive sign missing. For analysis, errors were broken down into
three categories: Incorieci (W), no answer written (B), and operation (C). An operatior error vis considered to have occurred if the result could have been obccined if S has in fact employed a different operation than directed by the sign presented. For example, if the actual problem presented was $12+3$, a C error was considered to have occurred if the answer presented was either 5 or 36 . Table 2 contains the summary stacistics for errors and Table ? contains the teat results appear in the appendix. ANOVA at this point became too cumbersome and therefore multiple T's were employed in the analysis. An inspection of Table 3 reveals some trerds. It would appear that multiplicacion for the H group (regardless of sign position) was extremely difficult as demonstrated by the sigrificantly more blanls than answers (two tailed: (L) W vs B $t(20)=$ $11.296 \mathrm{p} \because .001$; (M) H vs $\mathrm{B} \underline{t}(20)=9.034 \mathrm{p}-.001$; (R) W vs $\mathrm{B} \underline{t}(20)=$ 13.115 p -. 001). This was also true for addition when the sign was anywhere other than the middle position ($(\mathrm{L}) \mathbb{W}$ vs $B t(20)=3.602 \mathrm{p}: .01$; (R) V vs $B t(20)=2.364 \mathrm{p}: .01)$. Little differences between presentation modes were demonstrated for incorrect answers. Operation errors within the visual mode (V vs H) were significani only in $+L$ and $x R$ problems $((+L) V$ vs $H t(20)=3.051 \mathrm{p} \therefore .01 ;(x R) V$ vs $H t(20)=3.090 \mathrm{p}$ (t (01). The A condition produced significantly less operation errors relative to the V condition for +L and $\cdot \mathrm{L}(\mathrm{C}+\mathrm{L}) \mathrm{A}$ vs $\mathrm{V}, \mathrm{t}(20)=4.114 \mathrm{p} \cdot .01$; (-L) A vs $V, \underline{E}(20)=2.34 j p: .01)$; and relative to the H condition for $+\mathbb{R}$, $x R, x M, x R((+R) A$ vs $H, t(20)=2.864 \mathrm{p}$ (.01; (xL) A vs Ht(20) $=$ $5.724 \mathrm{p} \therefore .01$; (xM) A vs H , 느 (20) $=4.706 \mathrm{pe.01}$; (xR) A vs $\mathrm{H} t(20)=$ 4.423 p :. . O1). It would appear that operation errors have a greater probabllity of occurance with visual presentation than with aural.

Summary
Although dealing with colleges and therefore trememdous overlearning, significant differences were demonstrated for all manipulations. The causal factors operating to produce the differences are unknown. If the aural "minus" was replaced with the term "subtract" differential resulis mipht be obtained. That is, a statement of the operation rather than the sign might produce greater correct responses. Further, this initial probe did not attempt to break the presentation into the stages of recognition and computation. During H presentation for example, a mirus left problem might produce difficulties in recogrizing the sign requirements of the answer. Once this was resolved, computation might easily follow.

Whether any of the differences in this research can be demonstrated with younger children and if various presentation methods might facilitate or hinder acquisition is unknown. Future research in mathematics education should direct: some attention toward these possibilities.

T•T	2•1	$9 \cdot$	$\varepsilon \cdot$	己•	［•	$8{ }^{-}$	$0^{\circ} \mathrm{T}$	$0^{\circ} \mathrm{I}$	$9{ }^{\bullet}$	己	${ }^{\text {－}}$	$6 \cdot$	$\varepsilon \cdot 1$	サ・1		で		
$\dagger \cdot \varepsilon$	$6 \cdot ¢ \mathrm{~L}$	$5 \cdot \varepsilon$	て・9	ザカ	己•S	ガサ		でこ	\underline{L} ¢ ¢	L－I	己・く	$6^{\circ} \mathrm{C}$	$\zeta \cdot \varepsilon \tau$	サーて	S．S	${ }^{\circ} \mathrm{S}$	L．9	g
$9^{\circ} \mathrm{I}$	$8^{\circ} \mathrm{C}$	9° 己	$\varepsilon \cdot S$	$8^{\circ} \mathrm{I}$	$8^{\circ} \mathrm{E}$	$L \cdot \mathrm{I}$	$\underset{\text { sməTq0xa }}{9^{\bullet} \zeta}$	$\begin{aligned} & 5 \cdot 己 \\ & \text { noty } \end{aligned}$		$9^{\circ} \mathrm{I}$	でサ	$5 \cdot \mathrm{C}$	$8 \cdot$ ¢	$5 \cdot 0$	ごサ	$8^{\circ} \mathrm{L}$	L° ¢	i
$6 \cdot$	$5 \cdot$	$5 \cdot$	\dagger^{*}	－で	［＊	$9{ }^{\circ}$	$\varepsilon \cdot$	8 －	$5 \cdot$	で	［＊	\dagger^{\bullet}	己	50	ゅ＊	द＊	${ }^{\text {－}}$	5
ごサ	$5 \cdot 9$	$L^{\circ} \mathrm{I}$	¢•己	$\varepsilon \cdot \square$	$\underline{1}$	$8^{\circ} \mathrm{C}$	8＊カ	$6^{\circ} \mathrm{I}$	$5 \cdot \mathrm{C}$	$6^{\circ} \mathrm{I}$	$5 \cdot 1$	ガカ	$\varepsilon \cdot L$	$9^{\circ} \mathrm{I}$	£•己	$9^{\circ} \mathrm{C}$	$8^{\circ} \mathrm{I}$	a
$\dagger \bullet$ ¢	$\varepsilon \cdot \Sigma$	$8^{\circ} \mathrm{I}$	L•己	て・I	$9^{\circ} \mathrm{I}$	$\varepsilon \cdot 己$	$6^{\circ} \mathrm{C}$	$9^{\circ} \mathrm{I}$	00%	で「	て・	$5 \cdot \mathrm{C}$	$\varsigma \cdot £$	$\varepsilon^{\bullet} \cdot \sim$	$\varepsilon \cdot 己$	6^{1} I	$5 \cdot 2$	A
							swa	qoxa	－Tプ	qns．								
こ・て	T－I	$6 \cdot$	$9{ }^{\circ}$	0	0	\dagger^{*}	ご	$9{ }^{\circ}$	$\varepsilon \cdot$	ご	${ }^{\circ}$	$5 \cdot$	サー	$9{ }^{\circ}$	$6{ }^{\circ}$	サー	己＇	5
$9 \cdot \varepsilon$	c•S	ごて	こ・て	$9{ }^{\circ} \mathrm{C}$	$8^{\circ} \mathrm{I}$	L•己	$6^{\circ} \mathrm{\varepsilon}$	S．z	$\underline{1}$ ¢	$5 \cdot \mathrm{c}$	$\varepsilon \cdot \tau$	$L^{\bullet} \varepsilon$	$6^{\circ} \mathrm{S}$	$8^{\circ} \mathrm{C}$	$0^{\circ} ¢$	S．n	カ゚て	g
て・て	－げて	$5 \cdot 1$	6． 1	$L^{\circ} \mathrm{T}$	ε^{\bullet} I	$6{ }^{1}$	$6^{\circ} \mathrm{C}$	$5 \cdot \varepsilon$	$\varepsilon^{\bullet} \cdot \square$	$\underline{1}$ ！	$5 \cdot \mathrm{I}$	$6{ }^{\circ} \mathrm{T}$	$5^{\circ} \mathrm{C}$	$\varepsilon^{\cdot} \cdot \underline{L}$	$\mathrm{I}^{\circ} \mathrm{C}$		$9^{\circ} \mathrm{I}$	M
as	x																	
	H		Λ		V		H				V		H		A		v	
				y											T			
								Iq0xd	noty									
						sхәм	ut xoxx	10a	sotus？	7 S K	umans							

